
Automatic Testcase Generation for
Flight Software

NASA Planetary Spacecraft
Fault Management Workshop

April 2008

David Bushnell, RIACS/NASA ARC
Corina Pasareanu, Perot Systems/NASA ARC

Ryan Mackey, NASA JPL

TacSat 3, ISHM, and VSM

• Faults are a fact of life in engineered systems
• NASA needs better ways of handling and recovering

from faults
• Fault management is a major driver of complexity in

software
• NASA’s TacSat 3 VSM project applies Integrated

Systems Health Management (ISHM) and Vehicle
Systems Management (VSM) technologies to an
experimental Air Force satellite

• NASA will test ISHM and VSM onboard TacSat 3 over
an extended period

What is ISHM?

• ISHM: Integrated System Health Management
• Capabilities far beyond “Fault Protection”
• Active control methods to improve safety, reliability, mission capability,

sustainability, and ultimate cost
• Required in an era of increasing system complexity, e.g. Exploration

SENSORS

CONTROL
INPUTS

MODELS

HISTORY

Sensor
Qualification/

Correction

Fault Detection

Trend/Precursor
Detection

Model Correction
Improvement

Validation

Hazard
Assessment

Reactive
Response

Mission Replan

Maintenance
Scheduling

Coordination
of Assets

Crew Interface

On-Demand
Training

Goals of the Vehicle Systems Management
Experiment

• Conduct maturation and in-space testing of Vehicle Systems
Management technologies
• Full-scale validation of model-based, autonomous, and ISHM software
• Deploy and operate in space environment after launch (TRL 7)
• Includes closed-loop experiments (full control) after end of primary

mission

• Gain integration and flight experience with TEAMS and SCL
• Fault detection and automation technologies TEAMS and SCL baselined

for Orion spacecraft
• Flight experiments crucial for risk-reduction of software technologies

• Demonstrate new NASA technologies, on-ground and on-board
• High-level spacecraft planning
• ISHM detection, diagnosis, reasoning technologies
• Advanced V&V approaches to complex software, including TEAMS and

SCL

Validating ISHM Components

• ISHM by definition deals with off-nominal conditions
• Have all the significant failure modes been identified?
• Is a given failure mode well understood?

• The number of combinations of failures is overwhelming
• Manual test generation is expensive and time consuming

Automatic Test Generation

• Manual test generation for software is time consuming
and error-prone
• Lots of tests needed for full code coverage
• Hard to create tests that cover specific code paths

• Manually testing concurrent code is especially difficult
• Model Checking offers a way out

• Automatically generates all paths through the code
• When combined with Symbolic Execution, it can create a test case

for each code path
• For concurrent code, exercises not only each code path, but also

each thread scheduler decision

Model Checking vs Testing/Simulation

OKFSM Simulation/
Testing

error

OK
FSM

specification

Model Checking

error trace
Line 5: …
Line 12: …
…
Line 41:…
Line 47:…

• Model individual state
machines for subsystems
/ features

• Simulation/Testing:
• Checks only some of

the system executions
• May miss errors

• Model Checking:
• Automatically combines

behavior of state
machines

• Exhaustively explores
all executions in a
systematic way

• Handles millions of
combinations – hard to
perform by humans

• Reports errors as traces
and simulates them on
system models

Java PathFinder (JPF)

• Developed by RSE group at NASA Ames
• Explicit state model checker for Java bytecode

• Version targeting C/C++ is under development
• Focus is on finding bugs

• Concurrency related: deadlocks, (races), missed signals etc.
• Java runtime related: unhandled exceptions, heap usage, (cycle

budgets)
• Complex application specific assertions

• Recipient of NASA “Turning Goals into Reality” Award, 2007.
• Open sourced since 04/2005 under NOSA 1.3 license:

<javapathfinder.sourceforge.net>
• First NASA system development hosted on public site
• ~14000 downloads since publication
• ~25000 read transactions in 2007

Symbolic Execution

• JPF– SE:
• Recent extension to JPF that enables automated test

case generation
• Symbolic execution with model checking and constraint

solving
• Applies to (executable) models and to code
• Generates an optimized test suite that exercise all the

behavior of the system under test
• Reports coverage
• Checks for errors during test generation process

 if ((pres < pres_min) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

 if ((pres < pres_min)) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

 if ((pres < pres_min) ||
 (pres > pres_max)) {

…
 } else {
 …
 }

Symbolic Execution
Generating and Solving Constraints

 if((pres < pres_min) || (pres > pres_max)) {
…

 } else {
 …
 }

[pres = 460; pres_min = 640; pres_max = 960]

[pres = Sym1; pres_min = MIN; pres_max = MAX] [path condition PC: TRUE]

[PC1: Sym1< MIN] [PC2: Sym1 > MAX]

[PC3: Sym1 >= MIN &&
Sym1 <= MAX

Solve path conditions PC1, PC2, PC3 → test inputs

Previous Applications

• Onboard abort executive
• Prototype for CEV ascent abort handling being

developed by JSC GN&C
• Manual testing: time consuming (~1 week)
• Guided random testing could not cover all aborts
• JPF-SE

• Generated 151 tests to cover all aborts and flight
rules

– Total execution time is < 1 min
• Found major bug in new version of OAE

• K9 Rover Executive
• Executive developed at NASA Ames
• Automated plan generation based on CRL grammar
• Generated hundreds of plans to test Exec engine

Applications to the TacSat Project

• Test Case Generation for SCL
• SCL from Interface and Control Systems, Inc. is a rule-

and script-based runtime executive for aerospace
applications

• Use JPF–SE to generate SCL scripts based on SCL
Yacc grammar

• Run SCL exec engine on these scripts and measure
coverage

• Focus SCL script generation on particular features of
the language/engine

Test Case Generation for SCL

SCL
Yacc Grammar +

Lexer

Java
Spec

JPF—SE
Test Case

Generation
SCL Scripts

convert

SCL
Exec

run

ICS In-House
Coverage

Tool

Measure
Code
Coverage

Coverage
and Error

ReportFocus
Testing

Applications to the TacSat Project

• Test case generation for SHINE models
• SHINE from JPL is a very high-performance rule engine

for embedded systems
• Shine can generate C and Java code from its rule

bases
• We will apply JPF-SE to the SHINE java code to

generate testcases for all paths through the rules
• We will also apply JPF to the SHINE Java code to

verify that critical safety properties hold under all
possible executions

Test Case Generation for SHINE models

SHINE rules Java Spec +
assertions

JPF—SE
Analysis and

Test Case
Generation

Test Vectors

 Convert

C code

Assertion
Violation

Report

 Fix Errors

 Perform testing

Early Results

• SCL Results
• We have part of the SCL Yacc grammar translated to

Java and have generated test scripts covering that part
of the grammar

• After coverage feedback from ICS, we will extend the
translation and focus it on uncovered paths

• SHINE Results
• The SHINE-to-Java translator working and we are

beginning to generate test cases for simple rule sets
• We have tested sample safety properties with our rule

sets and generated both test cases and code traces
showing the paths to the violations

Handout
Automatic Testcase Generation for

Flight Software
• Contacts:

• David Bushnell: david.h.bushnell@nasa.gov
• Corina Pasareanu: corina.s.pasareanu@nasa.gov
• Ryan Mackey: ryan.m.mackey@nasa.gov

Sample SCL Grammar
and Java Code

SCL Grammar

complex_expression
 : function
 | expression NE expression
 | expression LT expression
...etc...
;

Java Code

public String complex_expression() {
 int selector = Verify.random(1);
 switch (selector) {
 case 0:
 return expression() + “!=" + expression();
 case 1:
 return expression() + "<" + expression();
...etc...
 default:
 throw new GrammarException();
 }
}

Java Pathfinder Output
for SCL Grammar

... etc...

-- Script Set:
SCRIPT TestScript070
 MESSAGE "a message"
 battvolts = battvolts
 MESSAGE "a message"
 battvolts = 1
END TestScript070

... etc...

-- Script Set:
SCRIPT TestScript17007
 if battvolts then
 EXECUTE TestScript07006 , PRIORITY = 4
 end if
END TestScript17007

SCRIPT TestScript07006
 MESSAGE "a message"
 battvolts = battvolts + battvolts
END TestScript07006

Sample SHINE Rules
and Java Code

Java Code

private void sr_JR01() {
 sa_J02 = 2;
 ep_RFC_Flag = true;
 ep_DS_RFC_S[ep_DS_RFC_PSO].rdfv_JR02_Flag
 = true;
}

private void sr_JR02() {
 sa_J03 = 3;
 ep_RFC_Flag = true;
 ep_DS_RFC_S[ep_DS_RFC_PSO].rdfv_JR03_Flag
 = true;
}

private void sr_JR03() {
 System.out.printf("Done\n");
}

SHINE Rules

(Def_Rule JR01
 :Order 1
 :If (= J01 1)
 :Then (:Set J02 2))

(Def_Rule JR02
 :Order 1
 :If (= J02 2)
 :Then (:Set J03 3))

(Def_Rule JR03
 :Order 1
 :If (= J03 3)
 :Then (printf "Done\\n"))

Java Pathfinder Output
for SHINE Rules

Symbolic Execution Mode
JavaPathfinder v4.1 - (C) 1999-2007 RIACS/NASA Ames Research Center

Execute symbolic INVOKESPECIAL: doTEST(III)V (J01_1_SYMINT, J02_2_SYMINT, J03_3_SYMINT)
Done
Done
Done
doTEST: # = 3
J03_3_SYMINT[3] == CONST_3 && J02_2_SYMINT[2] == CONST_2 && J01_1_SYMINT[1] == CONST_1
Done
Done
doTEST: # = 3
J03_3_SYMINT[-10000] != CONST_3 && J02_2_SYMINT[2] == CONST_2 && J01_1_SYMINT[1] == CONST_1

...etc...

doTEST: # = 3
J03_3_SYMINT[3] == CONST_3 && J02_2_SYMINT[-10000] != CONST_2
 && J01_1_SYMINT[-10000] != CONST_1
doTEST: # = 3
J03_3_SYMINT[-10000] != CONST_3 && J02_2_SYMINT[-10000] != CONST_2
 && J01_1_SYMINT[-10000] != CONST_1

References

• Java Pathfinder source code and documentation:
http://javapathfinder.sourceforge.net/

• Java Pathfinder and Symbolic Execution:
JPF--SE: A Symbolic Execution Extension to Java PathFinder
http://ti.arc.nasa.gov/people/pcorina/papers/jpfseTACAS07.pdf

